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1. SUMMARY

A robust test, which we call an aligned generalized, M-test for testing

subhypotheses in the general linear models is developed, and its asymptotic

properties are studied. The test is a robustification of the well known F-test, and it

is an elegant and practical alternative to Ronchetti's (1982) class of r-tests.

P-values associated with it can be approximated readily using existing chi square

tables, unlike Ronchetti's test. The test is based on an appropriately constructed

quadratic form, and uses the generalized M-estimators of the parameters in the

reduced model. Under the null hypothesis the asymptotic distribution is a central

chi square, and under contiguous alternatives is a non-central chi square with the

same degrees of freedom. The test can also be viewed as a generalization of SeW s

(1982) M-test for linear models. --- -. - ) , C I-

Research partially supported by ONR contract N00014-80-CO741.
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The influence function of the test is bounded. The bound not only applies to

the influence of residuals but also to the influence of position in the factor space.

Sen's test, on the other hand, has bounded influence only in residuals. (1CF - (-

Some key words: aligned generalized M-test; bounded influence; contiguous

alternatives; influence function; linear model; random carriers; robustness; r-test.

2. INTRODUCTION AND THE MODEL

We consider the following model: {(xi,yi); i = 1,2,-. ,n} are independent

random variables such that

+ =  (2.1)

where 1i is independent of i ad has distribution function K(.) with density

k(s). In the above linear model it is well known that least squares estimates are

very sensitive to aberrant data points, that is points that deviate significantly from

the bulk of the data. This sensitivity has led to various proposals for robust

methods of estimation. Among those proposals are the classical M-estimates

introduced by Huber (1973), and the generalized M-estimates introduced by

Hampel (1977) and discussed by Maronna and Yohai (1981). 1 For

Parameter estimation is the first step in data analysis. Often, we are
0

interested in testing if a number of linearly independent estimable functions are -o

equal to zero. Through a transformation in the parameter space this hypothesis
t I on/

Avallability Codes

Aa1l- and/or

DIst Special
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reduces to the hypothesis of testing if a certain subvector of the vector of unknown

parameters equals zero, treating the remaining parameters as nuisance parameters.

Known robust testing procedures are the pc-test, introduced by Schrader and

Hettmansperger (1980), which makes use of Huber' s M-estimators, and the

alternative to the P.-test, an aligned M-test, which was introduced by Sen (1982).

LtaT = (al a27) where ai is a pIl vector and a2is a qil1 vector,

q < p. The above testing procedures, for the hypothesis H0 : 42= 1

unspecified, are robust against points that exhibit large residuals. The influence

with respect to the residuals of the above testing procedures is bounded. Their total

influence though is unbounded, since the part of it that corresponds to the influence

in the factor space is unbounded (see Hampel et al., 1986, page 354).

Ronchetti (1982) introduced the class of r-tests which makes use of the

generalized M--estimates, which have bounded influence. The class of r-tests, for

testing the hypothesis H0 : 42  
l

1 unspecified, is definea by means of the test

statistic

Sn211X ' A n; Y 1" 'Yn) :-(2.2)

(22
n y T T

-1 1, ,1!(T n r yi-i(Q n'- 2qi 1  ; ,]) .1;
i--I

where (r)n, (I:0)n are the generalized M-estimates in the reduced and full

model respectively, r: RP I - + is a function such that (i) for all X E RP ,

r r R, r(Z;r) $ 0, r(x;r) 0, r(x;0) = 0, and (ii) for all Z E RP, r(x;.) is

differentiable. See Hampel et al. (1986, p. 345) for a complete set of regularity

conditions. Large values of S are significant.n giiat
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The asymptotic distribution of Ronchetti' s (1982) r-test statistic, under

H0, is given by the distribution of

p
L = jl1N? (2.3)

j~p-q+1

where A p,-q+ I ?"p-q+2  " Ap > 0 are the q positive eigenvalues of the

matrix

K QM-1 - 0M~ 11 (2.4)

where M-1 is the inverse of the upper (p-q) z (p-q) part of the M matrix, and

M = Elq' (z;r)x xT , Q = E{q2 (z;r)x T } (2.5)

where

(z;r) = ?(z;r) , q( ;r) = i7' ( ;r). (2.6).6)

Further, Nj, j = p-q+l... ,p are independent standard normal random variables.

The most important choices of the q-function are of the form

0(2.7)
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where Yi: P -- R+ is a weight function, a > 0 and r is the residual, and

0c(t) = max[-c,min(c,t)], the Huber -function.

The r-test can be viewed as a complete robustification of the well known

F-test, since it accommodates points with large residuals and points with high

leverage. It is impractical however, since it is difficult to calculate the p-values

associated with it.

We will develop an alternative test, which can be viewed as a piactical

alternative to the class of r-tests. We call it an aligned generalized M-test, and it

is based on a properly constructed quadratic form which makes use of the

generalized M-estimates. The bounded influence property of the generalized

M-estimators carries over to the test based on them. Thus the influence function of

the aligned generalized M-test is bounded.

The asymptotic distribution of the aligned generalized M-test, under the

null hypothesis, is that of a central chi square random variable with q degrees of

freedom. Therefore p-values associated with the test statistic can be approximated

readily from existing chi square tables. The asymptotic distribution of the test,

under contiguous alternatives, is that of a noncentral chi square random variable.

3. THE PROPOSED TEST. ASSUMPTIONS AND DISTRIBUTION THEORY

The model is that of section 2. We will assume the regularity conditions

(Al) - (A6) and (Cl) - (C6) listed in Maronna and Yohai (1981). The notation is

slightly different, however we will not reproduce all the conditions here.

In addition, we assume that the density of the residuals is bounded. Without loss of
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generality, assume that a = 1. In practice a has to be estimated from the data.

We will discuss the estimation of the scale parameter a in a latter section.

Estimators based on (2.7) have been studied by Hampel (1977) and Krasker

(1980) for the special case of &4x) = 1/I ll, where 1111 is the Euclidean norm of

x, and for the general case by Maronna and Yohai (1981).

We will use generalized M-estimators, defined implicitly by the (vector)

equation

n

1(3.1)

Define the dispersion function

n
D( ) - . r( i i-Tx . (.2

T (3.2)

Its gradient, with respect to 1, is

n
vD(fl) = - ' i; Y-rT~i (3.3)qu-1 -"x 'f

Let
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n

(f) =-vD() = V ; Yi-XT (3.4)
i--I

~ T =(T **T, **

i (x2, ), where is a q-dimensional vector, be the

corresponding partition to the partition of the vector of unknown parameters. To

test the hypothesis H0 : 02 = 01' al unspecified versus H 1 : 42 2 0,l

unspecified, define the statistic W as follows:
n

2 [n1/2 T i Xo[n-/2 T (3.5)

W = - (3.q5)i-4 .
1= i=l

where is the reduced model generalized M--estimator, U is a consistent

estimate of the asymptotic variance-covariance matrix, which is defined in

Theorem 1. 6

Large values of W 2 are significant. The test statistic W 2 defines ann n
aligned test, which we call an aligned generalized M-test. We will discuss the

2
distribution theory of the test statistic Wa. Define

L(d = 5(do) - nM(-fo) (3.6)

where 4D is the true parameter and

n T (3.7)
n = 7,, ' (xi;Yi-A i 4DXii(37
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is a consistent estimator of the matrix M defined in (2.5), and q' is defined in

(2.6). Assuming the regularity conditions of Maronna and Yohai (1981), the

following results hold. Proofs are given in Markatou (1988).

Lemma I

Given K > 0

sup Jln-1/2 S(U) - n-l/2.L(.q)jj (3.8)

converges in probability to zero.

Lemma 2
Consider the random variables JlKi;yi-z ifaxj i = ,... ,n and

j = 1,2,... ,p where the (yi, ) are independent and identically distributed random

vectors. Then, under the assumptions of finite variance and zero mean

n
n-112 (U 0) =-1/2 q xi; i)2i

i=1

converges in distribution to a random variable Z, where Z ~ MVN(O,Q) witff Q

defined in (2.5).

Lemma 3
nl/2( - 4D) converges in distribution to the random variable Z where
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MVN(a,- 1QM- 1 ), with M and Q given in (2.5) and is the generalized

M-estimator in the full model.

Under the null hypothesis

t n a1/2  (.)U n a/2
2(4) has asymptotically a chi

square distribution with q degrees of freedom, where

. -1 .. . 1 - 1 2 (3.9)422 - 121 1112 - Q21M11M12 + M21lQ1M1IM12

and

n
i - (3.10)

i=1

and is the generalized M--estimator in the reduced model.
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3.1 DISTRIBUTION UNDER CONTIGUOUS ALTERNATIVES

We use contiguity as it is defined by Hajek and Sidak (1967, page 202). We

regard the given testing problem as a member of a sequence {II 0nH 1n}, n > 1 of

testing problems, and we consider alternatives

H1n: = I/2 A j=p-q+l,*.,p,

where AT (Ap-q+11 . ,Ap) is a qxl vector of finite constants. Then:

H0n: an = [ +

H1n: J = /2] = "I +n n-1/2

= +0
gsin]

Theor'em 2

Under the contiguous alternatives

Hn: h as n-a/2 sa n

the test statistics n-1 /2sT ):-1n-1I/2 2kQ0) has asymptotically a noncentral
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chi square distribution with q degrees of freedom, where 6 is the noncentiality

parameter defined by

6=.ATM U 22.1 (3.11)

and

M2 2 1  M22 - M2 M 1M12. (3.12)

Sen (1982), introduced the aligned M-test in linear models, based on the classical

M-estimators. Note that, if ,x;r) = c(r) where Oc(r) = max{--c,min(c,r)} is

Huber' s phi-function, and r denotes a residual, the above aligned generalized

M-test reduces to Sen' s M-test. Therefore, Sen' s M-test is a special case of the

aligned generalized M-test. The noncentrality parameter 6,' in the case of simple

linear regression and with x(2;r) = Oc(r), is given as

A2 72 72
6 ox (3.13)

00
n

andt) ,1 (xOx that is Sen'swhere Ality A = E[(r) and n- 1  (xi P 2

noncentrality parameter.
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4. INFLUENCE FUNCTION

We calculate the influence function of the aligned generalized M-test and

show that it is bounded. Roughly speaking, the influence function formalizes the

bias caused by one outlier. It was introduced by Hampel (1968, 1974) and it

describes the effect of an infinitesimal contamination at a point on the estimate,

standardized by the mass of the contamination.

Its formal definition is as follows:

T((I-t)F+tA X )

IF(x;T,F) = lim

for those x e X where the limit exists. T is an estimator which is a functional or

asymptotically can be replaced by a functional, F is a distribution function and

Ax is the distribution that concentrates all the mass at x.

The influence function of a test statistic describes the effect of an outlier in

the sample on the value of the (standardized) test statistic, and therefore on the

decision (acceptance or rejection of H0 ) which is based on this value. It is

analogous to the influence function of the estimators, which the test is based upon.

The influence function of the aligned generalized M-test is calculated under

the null hypothesis H0 : 42 = 01 dI unspecified. It is proved that, under certain

conditions on the q-function, the influence function is bounded. Let F (P;y)

denote the joint distribution function of (x,y).

Note that the model distribution under H0 is F Define:

€io
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J() = J x;y-2Tf**dFjxy) (4.1)

Let Wn be the aligned generalized M-test, and assume the regularity

conditions of Maronna and Yohai (1981) are satisfied. Assume J(00) = 0 (Fisher

consistency). Then, the influence function of the test statistic at (ZO,y 0 ) is given

as:

IF(21,y 0 ;W,F)=I 'K 0y-i90 ) [1 [.MiM 12] U- (-M2 M-1 I)2] 1

The proof of Theorem 3 is similar to the proof of Proposition 1 in Hampel et al.

(1986, p. 350) and hence we do not repeat it here; see also Markatou (1988).

b

The most important choices for the function q(X;r) are of the form given by

(2.7). In order for the influence function to be bounded )T A0 must be

bounded, where

A= 11 12 U(-M 21 MI1 I). (4.2)

Note that the matrix A does not depend on the outlying case (ZY 0 ). Thus a

natural choice for the q-function would be the one fnr which
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1 M 1 2 ] 
- 1 / 2

In that case

sup IIF(x,y;W,F go)I <c< (4.4)

where c is a finite constant. See, for example, Krasker and Welsch (1982).

There are other choices of t(x) for which the influence function of the test

statistic remains bounded.

(1) Following Schweppe's proposal introduced in Handshin et al. (1975), we

choose tZ0) = (1-T(XTX)-1,0)1/ 2 = (1-h0)1/2. Then, as h0 - 1,

L x0) - 0, where h0 is the leverage that corresponds to the outlying case

(.,No,y 0 ). Then, the sensitivity of the test statistic W is

sup I IF(x,y;W,F.)1 5< supll(-M 2 1 M22)IF(Z,y;_.,F)l
, y 4-o x,y 4

< c1 <®

that is, the sensitivity of the test is bounded by a rescaled version of the sensitivity

of the reduced model generalized M-estimator.

(2) Welsch's (1980) proposal consists of choosing t(zO) =

[1-xT(XTX)-Io/[xT (XTX)-1/ 2 - (1-h 0 )/h'/ 2. Then, as h0 -- 1,

&Z0) "- 0 and thus, the influence function of the test statistic reduces to a rescaled
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version of the influence function of the reduced model generalized M-estimate,

which has bounded sensitivity.

Generally, starting with a bounded influence estimator, the influence

function of the test based on this estimator will be bounded.

5. EAMPE

The data design comes from a paper by Hill and Holland (1977) and consists

of six columns. Table 5.1 contains the values of the explanatory variables in its first

six columns. Column number 7 corresponds to the data values of the dependent

variable y.
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Table 5.1: Data Values

Column 1 2 3 4 5 6 7

\Row

1 .2712 .2712 -. 0453 .0257 -. 0880 .0288 .92718

2 .2712 .1627 .1092 -. 1268 -. 0509 .0470 -. 06165

3 .2712 .0542 .4513 .0963 .0140 .0682 -. 74198

4 .2712 -. 0542 -. 1605 .2977 -. 1065 .0225 -. 31325

5 .2712 -.1627 .2242 -.3618 .2463 .3193 -.18593

6 .2712 -.2712 .0107 .1246 -.0814 .0461 .18593

7 .1627 -.2712 .1937 .1006 -.0373 .0583 .31325

8 .0542 -.2712 -.2435 .3205 -.1373 .0404 -1.40377

9 -. 0542 -. 2712 -. 0094 -. 4123 -. 0852 .0228 1.12690

10 -.1627 -.2712 .1382 .4631 -.0630 -.0112 1.87129

11 -.2712 -.2712 .0956 .0984 -.0489 .0388 -.91718
h

12 -.2712 -.1627 .0597 -.1136 -.0732 .0327 .74198

13 -. 2712 -. 0542 -. 0613 -. 1263 -. 0944 .0303 .06165

14 -. 2712 .0542 .1282 .0598 -. 0680 .0691 -1.87129

15 -.2712 .1627 -.0966 -.0085 .1387 -.0672 -.58740

16 -.2712 .2712 -.1060 -.3819 -.1340 .0559 -.44602

17 -.1627 .2712 .2013 .0145 -.0290 .0966 1.40377

18 .0542 .2712 .0914 .0840 -. 0417 -. 0620 .58740

19 -. 0542 .2712 -. 4324 -. 2083 -. 1520 -. 9198 -1.12690.

20 .1627 .2712 -.5486 .0544 .8917 .0833 .44602
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The model to be fitted is

Yi- 'O + OlXil+62xi2 + 33 + 4xi4 + #5xi5 + #6xi6 + "i (5.1)

i = 1,...,20.

In vector formulation the above model can be written as:

X + (5.2)

where a1  and 12 0304,106). We are interested in testing the

hypothesis

H0 : 2 - 1 unspecified vs

H1 : I # , unspecified.

In an analysis of variance setting we can interpret the above hypothesis as testing

for the significance of the covariates in a designed experiment.

The reason for choosing this particular data set is that the observations

exhibit varying degrees of leverage. The first two columns of the data set

correspond to variables like those in a designed experiment, and hence they

represent a very well behaved low leverage situation. The next two columns were

selected to represent a sample from a bivariate normal distribution, and they are

also low leverage observations.

Columns 5 and 6 were chosen to represent a sample of 20 observations from a
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distribution with outliers. Two independent Cauchy samples of size 20 were drawn

and the largest observations in each sample were moved until they contributed 80%

and 85% to the total sum of squares of their columns, respectively. Thus, those

two columns represent a high leverage situation. The two high leverage cases are

located in rows 19 and 20.

Note that the leverage of the nineteenth case is hi 9 2f .952986 and that of

the twentieth case is h20 = .747831. If hi > 2(p/n), where (p/n) is the average

leverage, p is the number of parameters and n is the sample size, then we

characterize the ith observation as a high leverage observation; see Belsley et al.

(1980). In this particular example 2(p/n) = .7, and so clearly observations 19 and

20 are high leverage ones.

After the above six columns were selected, each column was standardized to

have mean 0 and unit sum of squares.

To generate a set of dependent variables y (column 7'in table 5.1), we

generated 20 normal scores. Regressing the obtained set of normal scores onto the

six columns generated before, we selected the random permutation of the normal

scores that gives us a small R2-coefficient. Therefore the experiment has been

constructed so that no regression effect is present.

We would like to show how a combination of high leverage cases with

outliers in the dependent variables distorts the results of an analysis based, not-only

on the classical F-test procedure, but also on robust procedures that do not

accommodate high leverage cases. To this end we replace the dependent value that

corresponds to the nineteenth case by y19 = -7.84. This new value is

approximately six standard deviations away from the original value. The least
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squares regression with y19 = -7.84 gives R2 = 72.6% and an R2-adj = 60%.

Table 5.2 contains the value of the various statistics and their p-values:

Table 5.2: Statistics and their p-values

Statistic Numerical P-value
Value

F-statistic 7.9307475 .0008

M-test 13.86 .008

aligned generalized 3.69264 .4492
M-test

To calculate the M-test we used Huber's -function with c = 1.345 (that gives

95% efficiency at the normal model). Hence, in this example, the bounded influence

aligned generalized M-test out performed both the F-test and the M-test.

To calculate the aligned generalized M-test we chose to use Welsch' s

weights; that is, the weight function i(x) is given by

1-xT (X Tx)-x 1-h (5.3)
420= (T (XTX)_x) 1/2 = -l72

where h f (XT X)-1x. Then

r, if Idi] < c

__ = I--r (5.4)i7' J) c.(xi) sign [s-')J if Idil > c
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where s(i) is the standard deviation calculated without the ith case and is given as

P)i 2  r (5.5)(_.p1)s--i

hi is the leverage of the ith case, ri is the residual of the ith case and di is the

corresponding DFFITS, which is defined as

di  DFFITS i - (i)- h11/2 ti  (5.6)

ti is the externally studentized residual (see Belsley, Kuh and Welsch, 1980). The

DFFITS can be interpreted as the change in the fitted value that results when the

ith case is deleted and the difference is scaled by an estimate of the standard

deviation of the fitted value.

The calculations are carried out using iterated least squares by making the

identification, using (2.7),

q(x; ) - ,r)r

(5.7)

Then
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M = Ell [rd]X T} (5.8)

where ic(t) =I(It 1 c) and

Q= E{w2(x;r)(r)2X.X T }  (5.9)

Estimates are.

__ , " J T (5.10)

and

nI w2 (52(*;r~ri.i (5.11)

In the weighted least squares formulation using Welsch' s weights, cases are

smoothly downweighted according to how much Idi I exceeds c. Following

the recommendation in Belsley, Kuh, and Welsch (1980), we took

C = (p/n)1/ 2 = 1.183. The value of the aligned generalized M-test statistic is

equal to 3.69 with an approximate p-value of .4492. Thus we fail to reject the-null

hypothesis. On the other hand, the F and M tests strongly reject H0 and yield

misleading results.

To estimate the scale parameter a for the calculation of the M-test we can

either use Huber' s proposal 2 (Huber, 1981) or the estimator = 2.1 x med{ I r* ,

where Ir![ are the n-p+1 largest absolute values of the residuals (Hill and
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Holland, 1977). In our calculation of the M-test we used the Hill and Holland

estimator of the scale.

6. SUMMARY AND CONCLUSIONS

The effect that the presence of a combination of highly influential points,

that is points of high leverage and outliers in the y variable, has on the testing

procedures has been studied.

In the least squares context, aberrant cases can determine the estimators of

the true parameter vector. They confuse the results of the testing procedure based

on the least squares estimators, since the test reflects the contribution of those

individual points in the model.

The M-test, in this context, is unreliable, as well as the F-test, though the

M-test shows a better behavior than the F-test with a p-value .008 compared to

.0008 of the F-test. The better behavior of the M-test can be explained by the

fact that the test accommodates large residual points; but it does not accommodate

high leverage points.

The aligned generalized M-test shows the best behavior. Designed to

accommodate points with large residuals as well as high leverage points, it does give

reliable results in the presence of the above mentioned combination. Its influence

function is bounded. It agrees also with the r-test, to which it is a practical

alternative, since one does not face the problem of computing p-values associated

with linear combinations of differentially weighted chi square random variables.

.==. ................................... t ! ,rt-'
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Thus, an elegant, computationally easy and reliable alternative to the class

of r-tests is the class of aligned generalized M-tests.
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20. Abstract (Continued)

distribution is a central chi square, and under contiguous alternatives is a

non-central chi square with the same degrees of freedom. The test can also be

viewed as a generalization of Sen's (1982) M-test for linear models.

The influence function of the test is bounded. The bound not only applies

to the influence of residuals but also to the influence of position in the

factor space. Sen's test, on the other hand, has bounded influence only in

residuals.


